Sections 1.3

Math 231

Hope College

The Dot Product

• Given vectors $\vec{\mathbf{x}} = \langle x_1, x_2, \dots, x_n \rangle$ and $\vec{\mathbf{y}} = \langle y_1, y_2, \dots, y_n \rangle$ in \mathbb{R}^n , we define the **dot product** of $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ to be the scalar

$$\vec{\mathbf{x}}\cdot\vec{\mathbf{y}}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

- Note that the dot product of any two vectors is a scalar. A common mistake is forgetting to add the resulting products and leaving the final answer as a vector.
- **Theorem 1.20:** (Properties of the Dot Product)
 - ① For all $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$, $\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \vec{\mathbf{y}} \cdot \vec{\mathbf{x}}$.
 - 2 For all $\vec{\mathbf{x}} \in \mathbb{R}^n$, $\vec{\mathbf{x}} \cdot \vec{\mathbf{x}} = ||\vec{\mathbf{x}}||^2$.
 - 3 For all $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$, $\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$.
 - ① For all $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, $(\alpha \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} = \vec{\mathbf{x}} \cdot (\alpha \vec{\mathbf{y}}) = \alpha (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}})$.

The Dot Product

• Given vectors $\vec{\mathbf{x}} = \langle x_1, x_2, \dots, x_n \rangle$ and $\vec{\mathbf{y}} = \langle y_1, y_2, \dots, y_n \rangle$ in \mathbb{R}^n , we define the **dot product** of $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ to be the scalar

$$\vec{\mathbf{x}}\cdot\vec{\mathbf{y}}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

- Note that the dot product of any two vectors is a scalar. A common mistake is forgetting to add the resulting products and leaving the final answer as a vector.
- **Theorem 1.20:** (Properties of the Dot Product)
 - ① For all $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n, \vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \vec{\mathbf{y}} \cdot \vec{\mathbf{x}}$.
 - ② For all $\vec{\mathbf{x}} \in \mathbb{R}^n$, $\vec{\mathbf{x}} \cdot \vec{\mathbf{x}} = ||\vec{\mathbf{x}}||^2$.
 - 3 For all $\vec{\mathbf{x}}, \vec{\mathbf{y}}, \vec{\mathbf{z}} \in \mathbb{R}^n$, $\vec{\mathbf{x}} \cdot (\vec{\mathbf{y}} + \vec{\mathbf{z}}) = \vec{\mathbf{x}} \cdot \vec{\mathbf{y}} + \vec{\mathbf{x}} \cdot \vec{\mathbf{z}}$.
 - ① For all $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, $(\alpha \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} = \vec{\mathbf{x}} \cdot (\alpha \vec{\mathbf{y}}) = \alpha (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}})$.

The Dot Product

• Given vectors $\vec{\mathbf{x}} = \langle x_1, x_2, \dots, x_n \rangle$ and $\vec{\mathbf{y}} = \langle y_1, y_2, \dots, y_n \rangle$ in \mathbb{R}^n , we define the **dot product** of $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ to be the scalar

$$\vec{\mathbf{x}}\cdot\vec{\mathbf{y}}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

- Note that the dot product of any two vectors is a scalar. A common mistake is forgetting to add the resulting products and leaving the final answer as a vector.
- **Theorem 1.20:** (Properties of the Dot Product)
 - For all $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$, $\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \vec{\mathbf{y}} \cdot \vec{\mathbf{x}}$.
 - 2 For all $\vec{\mathbf{x}} \in \mathbb{R}^n$, $\vec{\mathbf{x}} \cdot \vec{\mathbf{x}} = \|\vec{\mathbf{x}}\|^2$.

 - **3** For all $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, $(\alpha \vec{\mathbf{x}}) \cdot \vec{\mathbf{y}} = \vec{\mathbf{x}} \cdot (\alpha \vec{\mathbf{y}}) = \alpha (\vec{\mathbf{x}} \cdot \vec{\mathbf{y}})$.

Cauchy-Schwarz and the Triangle Inequality

• **Theorem 1.22:**(Cauchy-Schwarz Inequality)

For all
$$\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$$
,

$$|\vec{\mathbf{x}}\cdot\vec{\mathbf{y}}| \leq ||\vec{\mathbf{x}}|| ||\vec{\mathbf{y}}||$$
.

• Theorem 1.23: (The Triangle Inequality) For all $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$,

$$\|\vec{\mathbf{x}} + \vec{\mathbf{y}}\| \le \|\vec{\mathbf{x}}\| + \|\vec{\mathbf{y}}\|.$$

Cauchy-Schwarz and the Triangle Inequality

• **Theorem 1.22:**(Cauchy-Schwarz Inequality)

For all
$$\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$$
,

$$|\vec{\mathbf{x}}\cdot\vec{\mathbf{y}}| \leq ||\vec{\mathbf{x}}|| ||\vec{\mathbf{y}}||.$$

Theorem 1.23: (The Triangle Inequality)

For all
$$\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$$
,

$$\|\vec{\mathbf{x}} + \vec{\mathbf{y}}\| \le \|\vec{\mathbf{x}}\| + \|\vec{\mathbf{y}}\|.$$

Angle and Orthogonality

• Theorem 1.24: (The Angle Between Two Vectors) If $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 , and θ is the measure of the angle between them, measured so that $0 \le \theta < \pi$, then

$$\theta = \cos^{-1} \frac{\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}}{\|\vec{\mathbf{x}}\| \|\vec{\mathbf{y}}\|}.$$

- Given two vectors $\vec{\mathbf{x}}$, $\vec{\mathbf{y}} \in \mathbb{R}^n$ where $n \geq 4$, there is no predefined notion of the angle between $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$. Therefore, rather than proving a theorem such as 1.24 in the general case, we simply allow the formula above to *define* the angle between $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$.
- Two vectors x̄, ȳ ∈ ℝⁿ are orthogonal if the angle between them is π/2. Equivalently, x̄ and ȳ are orthogonal if x̄ ⋅ ȳ = 0.

Angle and Orthogonality

• Theorem 1.24: (The Angle Between Two Vectors) If $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 , and θ is the measure of the angle between them, measured so that $0 \le \theta < \pi$, then

$$\theta = \cos^{-1} \frac{\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}}{\|\vec{\mathbf{x}}\| \|\vec{\mathbf{y}}\|}.$$

- Given two vectors $\vec{\mathbf{x}}$, $\vec{\mathbf{y}} \in \mathbb{R}^n$ where $n \geq 4$, there is no predefined notion of the angle between $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$. Therefore, rather than proving a theorem such as 1.24 in the general case, we simply allow the formula above to *define* the angle between $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$.
- Two vectors x̄, ȳ ∈ ℝⁿ are orthogonal if the angle between them is π/2. Equivalently, x̄ and ȳ are orthogonal if x̄ ⋅ ȳ = 0.

Angle and Orthogonality

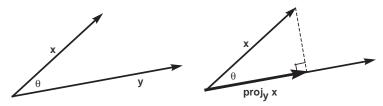
• Theorem 1.24: (The Angle Between Two Vectors) If $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 , and θ is the measure of the angle between them, measured so that $0 \le \theta < \pi$, then

$$\theta = \cos^{-1} \frac{\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}}{\|\vec{\mathbf{x}}\| \|\vec{\mathbf{y}}\|}.$$

- Given two vectors $\vec{\mathbf{x}}$, $\vec{\mathbf{y}} \in \mathbb{R}^n$ where $n \ge 4$, there is no predefined notion of the angle between $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$. Therefore, rather than proving a theorem such as 1.24 in the general case, we simply allow the formula above to *define* the angle between $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$.
- Two vectors $\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^n$ are **orthogonal** if the angle between them is $\pi/2$. Equivalently, $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are orthogonal if $\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = 0$.

Projection

 Sometimes, it is useful to project one vector onto the direction defined by another vector.



This can be done using dot products:

Given
$$\vec{\mathbf{x}}$$
 and $\vec{\mathbf{y}}$ in \mathbb{R}^n , with $\vec{\mathbf{y}} \neq \vec{0}$, $\mathbf{proj}_{\vec{\mathbf{y}}} \vec{\mathbf{x}} = \frac{\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}}{\vec{\mathbf{y}} \cdot \vec{\mathbf{y}}} \vec{\mathbf{y}}$.